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Abstract: This study presents a validated adaptive method intended for real-time thermal rating (RTTR) of underground
power cables. The accuracy of the RTTR algorithm, when producing emergency ratings or predictive calculations,
strongly depends on the following parameters (which have large uncertainties): correct soil modelling, the proper
determination of the soil properties and the accurate estimation of the ambient temperature. To remove the
uncertainties, this study uses a novel approach to the modelling of the soil that allows the implementation of an
extended Kalman filter to estimate robustly the properties of the soil and the ambient temperature in real-time with the
data obtained from cable temperature sensors. These estimation techniques have been validated for several cable
installations and the accuracy of emergency current calculations has been assessed by comparing the calculated
results with finite element method simulations. In the context of smart grid applications, the possibility of adapting the
estimation models in real time with the new obtained measurements is a key aspect to assure robustness and
accuracy of the power system operation and control.
1 Introduction

Real-time thermal rating (RTTR) of underground power cables is
becoming increasingly popular. The reason is that system operators
need to push as much power as possible through the cables within
safety limits to remain competitive. Nowadays, important cables are
fitted with optical fibres (normally at the sheath/concentric wires
layer) that can be used to measure the temperature distributed along
the length of the cable. The purpose of the temperature
measurement is to eliminate the uncertainties that exist in the values
of the soil thermal resistivity, heat capacity of the soil and ambient
temperature (soil temperature at burial depth). The data gathered by
the temperature sensor together with better cable modelling is a
relevant enhancement for smart grid applications, where the
temperature of every conductor will be estimated accurately [1].

The thermal model of the cable itself can be made very precise
because engineers know the construction materials and the
dimensions of the different layers of the cable. In addition, the
thermal properties of the cable layers do not change substantially
during the lifetime of the cable. However, the resistivity of the soil
normally ranges from 0.5 to 4 m·K/W depending on the type of
soil and its moisture content [2]; heat capacity of the soil ranges
from 400 to 1600 J/(kg K) [2], and the temperature can vary (at
1.2 m depth) up to 15°C [3] between winter and summer.
Moreover, these parameters may have different values along the
run of the cable because the terrain changes.

Designers and operators of cable systems can accurately compute
the temperature of the conductor from the temperature at the external
surface of the cable. This is normally straightforward, because
precise and reliable models exist for the cable layers [2, 4–6].
However, if no measurement is available, in order to compute the
thermal evolution of the cable, the surrounding soil has to be
modelled. Usually, and unfortunately, there are large uncertainties
in the soil data, which changes with region and season. Both the
soil thermal resistivity and its temperature change along the run of
the cable and with the weather conditions. For instance, wet soil is
a better conductor of heat than dried-out soil. In addition, the
moisture content of the soil around the cable depends on the
current in the cable (moisture migration [7, 8]). Other sources of
uncertainty include the burial depth, the density of the soil,
presence of neighbouring heat sources (e.g. steam pipes or other
cables) and depth of the water table. Steady-state approaches to
thermal rating [4, 6] have been long studied and are commonly
used by power system operators. Nevertheless, this approach is
highly conservative because frequently the conductor temperature
is assumed to be at its normal operating temperature limit at the
start of an emergency or the heat capacity margin is disregarded
for short term rating calculations [9]. Also, usually conservative
assumptions are made for the values of the thermal resistivity of
the soil and ambient temperature.

To produce accurate emergency calculations and maximise the
utilisation of cable systems, abundant research efforts have been
made to enhance RTTR capabilities [7, 9–17]. The majority of
published work on RTTR modelling successfully estimates the
cable state (temperature of all its layers) when the temperature at
an external layer of the cable is provided. Other research proposes
offline inversion methods to estimate soil properties and show
interest in data assimilation methods [8] for an easier online
integration. Nevertheless, the authors of this paper have not found
relevant published results in the real-time estimation of the
properties of the soil using extended Kalman filtering techniques
for underground cable systems. Thus in this paper, the authors
introduce the implementation of an extended Kalman filter to
enhance robustness and prediction capabilities of RTTR systems in
scenarios where soil properties are unknown.

The development of a RTTR system for underground cables was
first reported in 1979 [9]. The proposed cable monitoring and rating
system uses measurements of conductor current and soil ambient
temperature to estimate the present and future temperatures of the
conductor. Such system presented already state estimation
techniques but the soil was modelled as a single thermal node and
soil properties were not estimated. More recent research on
dynamic feeder rating systems [10] shows new capabilities of
estimating the resistivity of the soil. In [10, 18], iterative
techniques use steady-state equations to calculate soil parameters.
These estimations are maintained constant for periods of 24 h. In
[10], the thermal evolution of the soil is computed by means of
equations that allow computing temperature rise as a function of
time, losses, diffusivity and resistivity of the soil, using
exponential integral functions, which are cumbersome.
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Fig. 1 Block diagram of the RTTR presented in this paper estimation
module uses the soil model and the extended Kalman filter to estimate the
soil properties and produce predictive computations of the thermal status
of the cable when the measurement of the fibre is not available
As described below the differences between the method of [9] and
our Kalman estimator are the facts that we introduce an extended
Kalman estimator (non-linear) and we estimate the properties of
the soil. On the other hand, the difference between the approach of
this paper and Anders et al. [10] is that we use a thermal ladder to
model the soil together with a Kalman filter and the soil properties
are estimated recursively for each fibre measurement and for each
time step. In [19, 20], other techniques are used to estimate the
soil properties. However, the soil properties are calculated only
once for a 7-day period.

Our paper presents a step forward in the direction of creating a
robust, efficient and reliable RTTR by eliminating the limitations
of the available techniques. It is important to mention that in
the previous published work, recursive techniques for soil
parameters are not used (when new data is available, reprocessing
of all data has to be carried out). In this paper, none of the
parameters are assumed constant since a complete transient model
is available.

This paper uses a recently developed model of the soil that allows
using well-known estimation techniques to compute the soil
properties and the ambient temperature. This is based on an
accurate physical discretisation of the soil, which enables building
an extended thermal RC ladder. This technique was introduced in
[18, 21], and was made optimal in [22] by finding the optimal
discretisation and the optimal number of nodes to produce an
accurate and fast model. The model is used to properly represent
simultaneously the thermal dynamic equations of the cable and the
soil in a single model. In this modelling context, the paper also
introduces an extended Kalman filter that robustly and recursively
estimates the state of the cable, soil properties and ambient
temperature.

To the best of our knowledge, this is the first time that an extended,
non-linear Kalman filter has been used to estimate successfully soil
parameters in order to produce accurate emergency cable ratings for
RTTR applications. The techniques of this paper have been
extensively validated with finite element simulations.
2 Real-time thermal rating

There are two main functions that an RTTR system should perform:
(i) compute the temperature of the conductor using as input data the
measured temperature (at some location in the installation) and the
Fig. 2 Ladder-type equivalent circuit for a cable of four layers and its surround
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load current; and (ii) estimate (or predict) the future temperature of
the conductor, from the initial state of the cable and soil, for the
study of emergency situations.

2.1 Functional description

An RTTR system is intended to perform dynamic estimation of the
cable rating or the conductor temperature based on real-time cable
loading, temperature of the cable at some layer (by optical fibre
measurements for example), ambient temperature measurements,
and soil parameters. An accurate RTTR system should be able to
estimate the steady-state (long-term) and the short-term ampacity
based on the actual operating conditions of the monitored
installation. Therefore usually a complete RTTR performs the
following tasks: (i) monitoring of cable temperature; (ii)
computation of cable ratings; (iii) estimation of soil parameters;
and (iv) thermal predictive calculations [9–11].

2.2 Technical approach

The RTTR presented and developed in this paper is structured in five
sub-modules: (i) data reception; (ii) monitoring module; (iii)
steady-state module; (iv) estimation module; and (v) predictive
module. The flow diagram is illustrated in Fig. 1. The first module
receives the data from the temperature sensors and also the current
that is circulating in the conductor. From experience, to perform a
good estimation, historical data of at least the previous 150 h is
needed. Thus, the collection of 168 h (one week) of data is
recommended. However, the longer the historical data the more
accurate the RTTR predictive calculations would be. The second
module processes the measurements of the temperature sensors in
the cable and using the models described in [2, 5, 6] computes the
transient evolution of the temperature at the conductor of the
cable. This module only uses the analogue electro-thermal circuit
that corresponds to the cable model (see the left-hand side of
Fig. 2). The third module offers capabilities of computing
steady-state ratings also using standard formulae [5]. Finally, the
estimation and predictive modules are capable of computing the
soil properties and the ambient temperature in transient conditions
to produce rating calculations when no fibre measurements are
available. Since extensive literature is available in the three first
modules [10, 11], this paper presents mostly the relevant
improvements made here to the estimation of soil parameters and
predictive calculations.

The accuracy of the RTTR greatly depends on the accuracy of the
soil properties. RTTR systems do not normally have measurements
of these properties; therefore they have to be estimated. To this
end, we present an RTTR that uses the measurement of the
temperature at the cable surface (or at any other layer) to estimate
such properties by means of a Kalman filtering algorithm. Then
the real-time information is fed to the other modules to update the
model, and to produce accurate and up-to-date calculations.
3 Extended Kalman filter: estimation of soil
parameters

In this section, a framework is presented to estimate the soil
properties in real-time and transient conditions.
ing soil that has been discretised into five layers
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To develop such framework, the ladder-type soil model presented
in [22] is used. This model represents the thermal dynamic equations
of the cable together with its surrounding soil. This extended model
is illustrated in Fig. 2 for a particular example of a cable with four
thermal nodes and a soil model of five nodes. The number of
nodes needed to represent the cable is linked to its number of
layers, and as it was discussed in [22], a model of five layers with
an exponential layer distribution shows optimal results for all
practical underground cable installations. This optimisation was
carried out for a wide range of cable depths, soil properties,
operation times, number of layers of the model and distribution of
the layers of the model. Please see [22] for more details including
a numerical example on how to construct such a model. The cable
data is given in Fig. 8 in the Appendix. Phase voltage and current
are the inputs to the model which calculates conductor, dielectric
and sheath losses (Q sources in Fig. 2). These losses are connected
at the appropriate nodes of the thermal ladder model. Resistances
and capacitances of the cable are represented as R1 to R4 and C1 to
C4. The RC ladder representing the soil is given by resistances
from Rs0 to Rs5 and capacitances Cs1 to Cs5.

Since this model allows for the representation of the cable and its
surroundings in a compact thermal ladder equivalent and this
complete model can be easily written in state space form, state
estimators are the logical approach to solve this problem. Among
the available state estimators, the Kalman filter is one that operates
recursively on streams of noisy input data and produces a
statistically optimal estimate of the underlying state [23]. This
filter is especially useful for this application because Kalman
estimators use a series of measurements observed over time,
containing noise and other inaccuracies and can produce estimates
of the states and other parameters that tend to be more precise than
those based only on a single measurement. Moreover, Kalman
filter implementations are easy to apply to systems that have
closed state space formulations. In the RTTR of this paper, the
objective is to produce the best estimate of the soil characteristics
by using the temperature measurements delivered by the fibre and
also the current that circulates through the cable. By processing
this information and obtaining accurate soil parameters, the RTTR
builds an adequate soil model and estimates correctly the
conductor temperature when the fibre measurements are not
available (predictive mode).
3.1 Implementation of the Kalman filter

Kalman filtering has been a subject of study since R.E. Kalman
published his famous first paper on optimal filtering and prediction
[24]. The Kalman filter is a well-studied and covered subject in
most control and estimation books [25] and it is widely used in
numerous applications. Examples include guidance, navigation and
control of vehicles. It is also used in time series analysis such as
signal processing [23, 25]. The Kalman algorithm works in
two-steps, the prediction step and the update step. The prediction
step advances the state of the system until the next scheduled
observation and the update step incorporates such observation. If
the observation is not available, multiple prediction steps can be
taken and the update steps may be skipped. The Kalman filter is
an efficient recursive filter that estimates the internal state of a
linear dynamic system from a series of noisy measurements and
together with the linear quadratic regulator, the Kalman filter
solves the linear quadratic Gaussian control problem [25].

The first development of the Kalman filter [24] assumed that the
underlying system is a linear dynamical system and that all error
terms and measurements have a Gaussian distribution.
Nevertheless, multiple extensions and generalisations have been
developed. Particularly, the extended Kalman filter was developed
to work also with non-linear systems [26–28]. Finally, if equations
of the uncertain parameters of the system dynamics are added to
the Kalman filter formulation, these parameters can also be
estimated together with the state estimation that the Kalman filter
delivers in its most basic form [29]. Since the development
presented in this paper requires the capability of estimating soil
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parameters (principally the soil resistivity, heat capacity and
ambient temperature), and in turn these parameters affect the
system thermal dynamics, the extended Kalman filter with
parameter estimation capabilities is the best choice.

The thermal equations of the cable together with the soil model
that surrounds such cable allow writing the following state space
equation

ẋ = Ax+ Bu (1)

where x represents the temperature of all layers of the cable and all
layers of the discretised soil and u represents the losses:
conductor, dielectric, sheath and armour of the cable. A and B are
the state and input matrices, which are composed by the thermal
ladder coefficients determined by the material and geometry of the
cable and the soil.

Simple algebraic manipulation, leads to each component of the x
vector to represent one of the thermal nodes in the thermal ladder.
Hence, all the coefficients in A and B are proportional to 1/RC
where R and C are, respectively, the thermal resistances and
thermal capacitances of each particular thermal node shown in
Fig. 2.

Since the RTTR application needs to estimate the ambient
temperature, that is, the last temperature node in the thermal ladder
and also the characteristics of the soil, (1) can be expanded with
its corresponding parameter equations as follows [29]
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where θ is the parameter to be estimated, Aθ is the matrix
representing the parameter dynamics and θn is the noise parameter
that allows the equation to evolve and move from the equilibrium
point. The thermal parameters of the cable, R and C, are known.
However, the parameters representing the soil, the values of Rs

and Cs, depend on the resistivity and heat capacity of the soil.
These parameters are uncertain; therefore they have to be
estimated. As a consequence, the coefficients in the A matrix
depend on θ and are no longer constant, but depend on the state
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x
u

[ ]
. Then, (2) becomes a non-linear system and it has to

be rewritten as

ẋ
u̇

[ ]
= f (x, u, u, un) (3)

Moreover, since the coefficients in the A matrix are proportional to
1/RC, the actual values of R and C of the soil cannot be estimated
separately and one can only estimate a multiplying factor to 1/RC.
In this paper, such a factor is named α. Therefore θ is a vector
composed by α and Tamb (soil ambient temperature).

The formulation in (3), with the extended state vector including
the parameters to be estimated, enables the possibility of using the
extended Kalman filter formulation on non-linear systems [23, 25,
27] for this particular application by updating the state variables
and the filter variance at every time step.

3.2 Performance of the Kalman filter

The implementation described in the previous section has been
carried out inside the RTTR engine. This permits to estimate both
parameters, one parameter, or none of them depending on the
degree of certainty. The latter situation would imply the estimation
only of the thermal state of all the nodes. In the case when only
one parameter is estimated, it is easy to understand that the
Kalman filter delivers better results when the parameter to be
estimated is Tamb. This is because, the uncertainty on α propagates
in a large number of coefficients in the A matrix and the
uncertainty on Tamb only represents uncertainty in one thermal
node but not on the coefficients of the A matrix.
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Kalman is a recursive filter that enhances its estimation as more
measurements are provided. This behaviour can be observed in
Fig. 3. This figure shows the time domain evolution of the
estimated state and parameters of the Kalman filter for a situation of
a trefoil cable buried in soil at a depth of 1 m with the fibre placed
at the outer layer of the cable (variable 4) and with an ambient
temperature of 20°C. Variables 1–4 represent the thermal nodes of
the cable and variables 5–9 represent the thermal nodes of the soil
model; see Fig 2. Finally, variable 10 represents the estimation of
Tamb. The grey area represents the uncertainty of the estimation
provided by the Kalman filter [25]. As it can be observed, the
estimation is very accurate (nearly inexistent grey area) for the
variables that are close to the measurement (variable 4).
Nevertheless, if the thermal node is far away from the measurement,
the uncertainty increases. Note, that the uncertainty on these thermal
nodes decreases when more measurement samples are fed to the
filter. For this particular case, after 150 h of data, the estimation of
the filter obtains very accurate and the estimation of Tamb converges
to the correct 20°C. This simulation was initialised with an ambient
temperature of 14°C to show the evolution of the Kalman filter. In
this example, a new data point is received from the fibre every
10 min. The more accurate the initial guess for the ambient
temperature the faster the convergence and vice versa.

Since the Kalman algorithm is a recursive algorithm, the soil
parameters do not need to be recalculated when new measurement
data is available. It suffices to record the state of the Kalman filter,
namely the value of the state vector x, parameter vector θ and
uncertainty matrix [25], and when a new data sample is available,
new parameters can be estimated with one simple iteration (and the
old data does not need to be reprocessed). These parameters would
be the optimal parameters considering all the previous information
and the last sample. This recursive characteristic makes the Kalman
technique very apt for an RTTR because it reduces the large
computation burden for real time and smart grid applications.

3.3 Robustness analysis

A robustness analysis needs to be conducted to assess the feasibility
of the RTTR algorithm presented in this paper. The analysis
determines if the estimations delivered by the Kalman filter
produce accurate results when using them for predictive
calculations. To this end, the Kalman estimator has been tested in
batches of 100 different situations. The statistical nature of each of
these situations is described as follows:
Fig. 3 Evolution of all the thermal nodes in one simulation of the RTTR Kalman fi
thermal nodes of the cable and variables 5–9 represent the thermal nodes of the 5-la
area represents the uncertainty of the estimation
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(a) Generation of data:

1. Random ambient temperature is chosen with statistically uniform
distribution between 10 and 30°C.
2. Random resistivity of the soil is chosen with statistically uniform
distribution between 0.2 and 3 m·K/W.
3. Data is generated with these characteristics using finite element
method (FEM) simulations and the information at the location of
the fibre is recorded. Thermal data of 168 h is generated. FEM
simulations are performed with the heat transfer module of
COMSOL assuring that boundary conditions, mesh size and time
step settings of the solver do not affect the final result. Also, the
validity of the FEM simulation has been validated against the IEC
results for the same case in steady state and transients.

(b) Kalman filter:

1. Random initialisation of α for the Kalman filter is chosen with
statistical uniform distribution between 0.2 and 3. This intends to
model the worst case scenarios in the knowledge of the resistivity
of the soil because measurement of this quantity suffers of high
uncertainty and it is not centred on its true value.
2. The ambient temperature for the Kalman filter is modelled with a
normal distribution of standard deviation of 3°C around the real
ambient temperature. This intends to model a worst case scenario
on the measurement of the ambient temperature because in this
normal distribution the errors could be as large as ± 9°C in the
measurement of the ambient temperature. Such large errors are not
expected in initial soil ambient temperature estimation.
3. The Kalman filter is run for 168 h of thermal data with the
information of the current circulating in the cable and the
temperature information of the fibre. The readings of the fibre are
noisy measurements with an rms value of 0.5°.

(c) Prediction phase:

1. Predictive calculations are performed using the estimated
parameters delivered by the Kalman filter in the previous phase.
2. Errors of the predictive calculations are computed in percent
against the data generated in (a). The errors are computed as:
ε(%) = ((ΔTFEM− ΔTpred)/ΔTFEM)·100.
3. The error for each simulation is recorded. The FEM values of the
properties of the soil and its estimated counterparts by the Kalman
filter are also recorded.
lter for a trefoil installation buried in soil at 1 m, Variables 1–4 represent the
yer soil model, Finally, variable 10 represents the estimation of Tamb, The grey
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Fig. 4 Estimated and FEM values of the ambient temperature and α in 100
different simulations where the true values (FEM values) of the ambient
temperature are randomised between 10 and 30°C and the thermal
resistivity of the soil is randomised between 0.2 and 3 m·K/W
The results of this robustness analysis are shown in Figs. 4 and 5.
From Fig. 4, one can observe that the estimated and FEM values of
the ambient temperature (top plot) are very accurate for the great
majority of cases. Similar results are obtained for the multiplying
factor α of the resistivity of the soil (bottom plot). Note that each
point in the plot is independent from each other. To obtain a point,
168 h of simulation are performed for a random set of ambient
temperature and factor α. It is important to note that in a few
instances the Kalman filter does not deliver a perfect estimation of
the ambient temperature, which coincide with compensating errors
in the estimation of α. This is explained because the Kalman filter
tries to minimise the error of the model at the position of the fibre.
In those situations, and since this is a non-linear system, there are
multiple solutions and the Kalman filter may find one that does
not correspond to the physical parameters. This could be solved
with a large scale global minimisation algorithm, but normally
these algorithms are very computational intensive and not
convenient for real-time applications. Nevertheless, these cases are
not an issue for the RTTR because as it can be seen in Fig. 5, the
Fig. 5 Distribution of the predictive error in per cent computed for the 100
simulations presented in Fig. 4
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error is below 1.5% in 97% of the cases and in the worst case
scenario the maximum error is of 4.5%. Fig. 5 shows the error
distribution of the predictive calculation described in (c) in per
cent for the 100 simulations of this analysis.
4 Results

In this section, the results of the RTTR are presented for two
different installations: a trefoil cable buried in soil and two flat
formations that run in parallel 1 m apart. For the sake of
conciseness, we are presenting the results only for two
installations, but similar validations have been performed for
cables in tunnels, cables in troughs and cables in pipes.

The validation procedure presented in this section consists in four
steps: (i) generation of data from FEM simulations modelling the
complete physics of the given installation; (ii) extraction of the
temperature measurements at the fibre location from the FEM
simulations, (iii) feed the RTTR engine with the fibre temperature;
and (iv) produce estimated results with the RTTR and compare
such results with those from FEM simulations.

4.1 Finite element simulations

4.1.1 Single trefoil cable buried in soil at 1 m: The first
validation is conducted on a three-phase cable installation in trefoil
formation buried in soil at 1 m depth. This installation can be
observed in Fig. 7 (left) in the Appendix. This simulation involves
a first period of 50 h with 600 A circulating in the conductor,
followed by a pattern of 24 h steps of 700, 1100, 1300 and 1000
A. Finally, a predictive calculation of 200 h is performed at an
emergency current of 1200 A. Fig. 6 (left) shows the comparison
between the FEM results and the RTTR results and also the
current shape. The vertical line in this figure shows the separation
between the operation mode (fibre available) and the predictive
mode (fibre not available). As it can be observed, the evolution of
the temperature at the conductor of the cable is very well captured
in the operation mode and also in the predictive mode, where the
error is always smaller than 0.5°C. This proves the correct
estimation of soil parameters. Particularly in this case, the soil
ambient temperature is estimated to be 20.1°C (FEM value is 20°
C) and the resistivity of the soil is estimated to be 0.89 m K/W
(FEM value is 0.9 m K/W).
4.1.2 Two flat formations in parallel at 1 m: In this second
case, the installation consists of two three-phase formations that
run in parallel buried in soil at a depth of 1 m. The centres are 1 m
apart; therefore induced heating between the formations is
expected. This geometry can be observed in Fig. 7 (right) in the
Appendix where the results of the simulation performed in FEM
are shown.

In this case, the simulation starts with 200 h at 900 A followed by
four 24 h steps at 1050, 750, 1200 and 900 A, respectively. Finally,
100 h at 1050 A. Fig. 6 (right) shows the thermal evolution of the
temperature of the conductor of the cable for the FEM simulation
and also for the RTTR simulation, as well as the current shape
evolution. One can observe that the results from the RTTR are
very accurate, both in the operation and the predictive regions.
Particularly in this case, the soil ambient temperature is estimated
to be 20.5°C (FEM value is 20°C) and the resistivity of the soil is
estimated to be 0.92 m K/W (FEM value is 0.9 m K/W). Note that
the estimated values and the FEM values are also very close in
this case because the Kalman filter takes into account the mutual
heating between the formations when estimating the parameters of
the soil and the value of the ambient temperature. This feature is
crucial because otherwise the Kalman filter would offset the
estimated parameters trying to match a situation in the absence of
mutual heating, which would lead to unrealistic estimated
parameters. This allows obtaining predictive results of the
temperature of the conductor that always match the FEM
simulation within 0.5°C margin.
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Fig. 6 (Left) Evolution of the temperature of the hottest conductor of a trefoil formation buried in soil at a depth of 1 m. (Right) Evolution of the temperature at
the hottest conductor (the centre cable) in a flat formation that lies buried in soil at 1 m and runs parallel to a formation of the same characteristics, These
installation can be observed in Fig. 7 in the Appendix, Temperature from FEM simulations is plotted in a solid black line and the output of the RTTR is
plotted in a dashed line, Current is plotted in a thinner line
5 Conclusions

This paper has presented important enhancements to the RTTR of
underground cables. This paper introduces for the first time the use
of the extended Kalman filtering techniques to process the
temperature information at a particular location of the cable to
estimate and update in real time the properties of the surrounding
soil and the ambient temperature with a full transient model of the
physics. Also, the feasibility of such implementation has been
validated under realistic and varying conditions and the accuracy of
the calculations has been assessed by comparing the calculated
results with finite element simulations. Previous implemented
methodologies in RTTR applications did not estimate the soil
parameters recursively and in real time, thus they needed to
reprocess all the data history every time new samples from the
temperature sensors became available. This is a limiting factor in the
context of smart grid applications when latencies become important.

A comprehensive set of robustness tests varying the soil properties
and initial ambient temperature has been presented. Ninety-seven per
cent of the calculations lie within a 1.5% error margin for different
types of installations even under noisy measurements from the
fibre. Accurate knowledge of soil thermal resistivity and ambient
temperature is paramount because it enables the RTTR engine to
calculate emergency ratings and temperature predictions based on
the actual state of the cable.

The final purpose of this paper is to take advantage of the heat
capacitance margin and the accurate knowledge of the soil properties
to obtain precise short term emergency ratings. Better RTTR
predictive systems, as the one presented in this paper, will permit the
utilisation of cable systems to their maximum capabilities, integrate
these systems in the future smart grid applications in order to better
operate the grid and help defer costly capital investments.
6 Acknowledgments

This work was supported in part by LIOS Technology GmbH,
Schanzenstrasse 39, Building D9-D13, Cologne, Germany.
7 References

1 Matus, M., Saez, D., Favley, M., et al.: ‘Identification of critical spans for
monitoring systems in dynamic thermal rating’, IEEE Trans. Power Deliv.,
2012, 27, (2), pp. 1002–1009

2 Anders, G.J.: ‘Rating of electric power cables’ (McGraw-Hill, New York, 1997)
3 Chang, J.H.: ‘World patterns of monthly soil temperature distribution’, Ann. Assoc.

Am. Geogr., 1957, 47, (3), pp. 241–249
IET Sci. Meas. Technol., 2015, Vol. 9, Iss. 6, pp. 654–660
& The Institution of Engineering and Technology 2015
4 Neher, J.H., McGrath, M.H.: ‘The calculation of the temperature rise and load
capability of cable systems’, AIEE Trans. Power Appar. Syst. III, 1957, 76, (3),
pp. 752–764

5 ‘Calculation of the cyclic and emergency rating of cables’. IEC Standards, IEC
60853-1 IEC 60853-2, 1989

6 ‘Calculation of the current ratings’. IEC Standards, IEC 60287-1 IEC 60287-2,
2001

7 Millar, R.J., Lehtonen, M.: ‘A robust framework for cable rating and temperature
monitoring’, IEEE Trans. Power Deliv., 2006, 21, (1), pp. 313–321

8 Steele-Dunne, S.C., Rutten, M.M., Krzeminska, D.M., et al.: ‘Feasibility of soil
moisture estimation using passive distributed temperature sensing’, Water
Resour. Res., 2010, 46, (3), p. W03534

9 Patton, R.N., Kim, S.K., Podmore, R.: ‘Monitoring and rating of underground
power cables’, IEEE Trans. Power Appar. Syst., 1979, PAS-98, (6), pp. 2285–2293

10 Anders, G.J., Napieralski, A., Zubert, M., Orlikowski, M.: ‘Advanced modeling
techniques for dynamic feeder rating systems’, IEEE Trans. Ind. Appl., 2003, 39,
(3), pp. 619–626

11 Huang, S.-H., Lee, W.-J., Kuo, M.-T.: ‘An online dynamic cable rating system for
an industrial power plant in the restructured electric market’, IEEE Trans. Ind.
Appl., 2007, 43, (6), pp. 1449–1458

12 Nelson, R.J., Brennan, T.F., Engelhardt, J.S.: ‘The application of real-time
monitoring and rating to HPOF pipe cable systems’, IEEE Trans. Power Deliv.,
1989, 4, (2), pp. 850–856

13 Douglass, D.A., Edris, A., Pritchard, G.A.: ‘Field application of a dynamic thermal
circuit rating method’, IEEE Trans. Power Deliv., 1997, 12, (2), pp. 823–831

14 Douglass, D.A., Edris, A.: ‘Real-time monitoring and dynamic thermal rating of
power transmission circuits’, IEEE Trans. Power Deliv., 1996, 11, (3),
pp. 1407–1418

15 Greenwood, D.M., Taylor, P.C.: ‘Investigating the impact of real-time thermal
ratings on power network reliability’, IEEE Trans. Power Syst., 2014, 29, (5),
pp. 2460–2468

16 Greenwood, D.M., Gentle, J.P., Myers, K.S., et al.: ‘A comparison of real-time
thermal rating systems in the U.S. and the U.K.’, IEEE Trans. Power Deliv.,
2014, 29, (4), pp. 1849–1858

17 Goehlich, L., Donazzi, F., Gaspari, R.: ‘Monitoring of HV cables offers improved
reliability and economy by means of ‘power sensors’’, Power Eng. J., 2002, 16,
(3), pp. 103–110

18 Olsen, R., Anders, G.J., Holboell, J., Gudmundsdottir, U.S.: ‘Modelling of
dynamic transmission cable temperature considering soil-specific heat, thermal
resistivity, and precipitation’, IEEE Trans. Power Deliv., 2013, 28, (3),
pp. 1909–1917

19 Li, H.J., Tan, K.C., Su, Q.: ‘Assessment of underground cable ratings based on
distributed temperature sensing’, IEEE Trans. Power Deliv., 2006, 21, (4),
pp. 1763–1769

20 Brakelman, H., Hirsch, H., Rohrich, A., Scheiffarth, H.-P., Stammen, J.: ‘Adaptive
monitoring program for dynamic thermal rating of power cables’. Proc. Jicable,
June 2007

21 Olsen, R.S., Holboll, J., Gudmundsdottir, U.S.: ‘Dynamic temperature estimation
and real time emergency rating of transmission cables’. IEEE Power and Energy
Society General Meeting, 2012, pp. 1–8

22 Diaz-Aguilo, M., de León, F., Jazebi, S., Terracciano, M.: ‘Ladder-type soil model
for dynamic thermal rating of underground power cables’, IEEE Power Energy
Technol. Syst., 2014, 1, (1), pp. 1–10

23 Kirk, D.E.: ‘Optimal control theory. An introduction’ (Prentice-Hall, Inc, New
Jersey, 1970)

24 Kalman, R.E.: ‘A New Approach to Linear Filtering and Prediction Problems’,
Journal of Basic Engineering, ASME Trans., 82 Series D, 1960, pp. 35–45

25 Simon, D.: ‘Optimal state estimation: Kalman, hinf and nonlinear approaches’
(John Wiley and Sons, 2006)
659



26 Einicke, G.A., White, L.B.: ‘Robust extended Kalman filtering’, IEEE Trans.
Signal Process., 1999, 47, (9), pp. 2596–2599

27 Ahmed, N.U., Radaideh, S.M.: ‘Modified extended Kalman filtering’, IEEE Trans.
Autom. Control, 1994, 39, (6), pp. 1322–1326

28 Alonge, F., D’Ippolito, F.: ‘Robustness analysis of an extended Kalman filter for
sensorless control of induction motors’. IEEE Int. Symp. on Industrial
Electronics (ISIE), 2010, pp. 3257–3263

29 Watanabe, N.: ‘Note on the Kalman filter with estimated parameters’, J. Time Ser.
Anal., 1985, 6, (4), pp. 269–278
Fig. 7 (Left) Thermal two-dimensional (2D) illustration of the temperature dist
installation used in the first example of Section 4. (Right) Thermal 2D illustration
buried in the soil at 1 m, This is the installation used in the second example of Se

Fig. 8 Model of the cable used as an example in this paper, The cable is a
cable of six layers: copper conductor, screen, XLPE insulation, screen,
copper sheath and PE jacket, As it is indicated in the IEC standards [5],
this cable is modeled as a four node model as it is indicated in Fig. 2
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8 Appendix

This section shows the geometry of the two installations used in
Section 4 to test the performance of the Kalman filter presented in
this paper and also the model of the cable used in these tests.
Fig. 7 presents the geometry of the installation used and Fig. 8
shows the construction details of the cable.
ribution of a trefoil cable installation buried in the soil at 1 m, This is the
of the temperature distribution of a two flat formations running in parallel

ction 4
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